Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Front Immunol ; 14: 1030879, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2309368

RESUMO

Introduction: There is an unmet medical need for effective anti-inflammatory agents for the treatment of acute and post-acute lung inflammation caused by respiratory viruses. The semi-synthetic polysaccharide, Pentosan polysulfate sodium (PPS), an inhibitor of NF-kB activation, was investigated for its systemic and local anti-inflammatory effects in a mouse model of influenza virus A/PR8/1934 (PR8 strain) mediated infection. Methods: Immunocompetent C57BL/6J mice were infected intranasally with a sublethal dose of PR8 and treated subcutaneously with 3 or 6 mg/kg PPS or vehicle. Disease was monitored and tissues were collected at the acute (8 days post-infection; dpi) or post-acute (21 dpi) phase of disease to assess the effect of PPS on PR8-induced pathology. Results: In the acute phase of PR8 infection, PPS treatment was associated with a reduction in weight loss and improvement in oxygen saturation when compared to vehicle-treated mice. Associated with these clinical improvements, PPS treatment showed a significant retention in the numbers of protective SiglecF+ resident alveolar macrophages, despite uneventful changes in pulmonary leukocyte infiltrates assessed by flow cytometry. PPS treatment in PR8- infected mice showed significant reductions systemically but not locally of the inflammatory molecules, IL-6, IFN-g, TNF-a, IL-12p70 and CCL2. In the post-acute phase of infection, PPS demonstrated a reduction in the pulmonary fibrotic biomarkers, sICAM-1 and complement factor C5b9. Discussion: The systemic and local anti-inflammatory actions of PPS may regulate acute and post-acute pulmonary inflammation and tissue remodeling mediated by PR8 infection, which warrants further investigation.


Assuntos
Alphainfluenzavirus , Pneumonia , Camundongos , Animais , Poliéster Sulfúrico de Pentosana/farmacologia , Poliéster Sulfúrico de Pentosana/uso terapêutico , Camundongos Endogâmicos C57BL , Pneumonia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
2.
Bioact Mater ; 26: 169-180, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-2282760

RESUMO

Ionizable lipid nanocarriers have made historical contribution to COVID-19 mRNA vaccines. Here, we report ionizable polymeric nanoparticles that co-deliver bi-adjuvant and neoantigen peptides for cancer immunotherapy in combination with immune checkpoint blockade (ICB). Current cancer ICB benefits only a small subset of patients, largely due to a lack of pre-existing target cells and checkpoint targets for ICB, tumor antigenic heterogeneity, and tumor immunosuppression. Therapeutic vaccines hold the potential to enhance ICB therapeutic efficacy by expanding antitumor cell repertoires, upregulating immune checkpoint levels and hence sensitizing ICB, and reducing tumor immunosuppression. Chemically defined peptide vaccines are attractive, but their current therapeutic efficacy has been limited due to 1) poor vaccine delivery to immunomodulatory lymph nodes (LNs) and antigen (Ag)-presenting cells (APCs), 2) poor immunostimulant adjuvant efficacy with restricted target cell subsets in humans, 3) limited adjuvant/Ag codelivery to enhance Ag immunogenicity, and 4) limited ability to overcome tumor antigenic heterogeneity. Here, we developed nanovaccines (NVs) using pH-responsive polymeric micellular nanoparticles (NPs) for the codelivery of bi-adjuvant [Toll-like receptor (TLR) 7/8 agonist R848 and TLR9 agonist CpG] and peptide neoantigens (neoAgs) to draining LNs for efficient Ag presentation in a broad range of APC subsets. These NVs potentiated the immunogenicity of peptide Ags and elicits robust antitumor T cell responses with memory, and remodeled the tumor immune milium with reduced tumor immunosuppression. As a result, NVs significantly enhanced ICB therapeutic efficacy for murine colorectal tumors and orthotopic glioblastoma multiforme (GBM). These results suggest marked potential of bi-adjuvant/neoAg-codelivering NVs for combination cancer immunotherapy.

3.
mBio ; : e0360021, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2288768

RESUMO

Pyroptosis, a programmed cell death, functions as an innate immune effector mechanism and plays a crucial role against microbial invasion. Gasdermin D (GSDMD), as the main pyroptosis effector, mediates pyroptosis and promotes releasing proinflammatory molecules into the extracellular environment through pore-forming activity, modifying inflammation and immune responses. While the substantial importance of GSDMD in microbial infection and cancer has been widely investigated, the role of GSDMD in virus infection, including coronaviruses, remains unclear. Enteric coronavirus transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) are the major agents for lethal watery diarrhea in neonatal pigs and pose the potential for spillover from pigs to humans. In this study, we found that alphacoronavirus TGEV upregulated and activated GSDMD, resulting in pyroptosis after infection. Furthermore, the fragment of swine GSDMD from amino acids 242 to 279 (242-279 fragment) was required to induce pyroptosis. Notably, GSDMD strongly inhibited both TGEV and PDCoV infection. Mechanistically, the antiviral activity of GSDMD was mediated through promoting the nonclassical release of antiviral beta interferon (IFN-ß) and then enhancing the interferon-stimulated gene (ISG) responses. These findings showed that GSDMD dampens coronavirus infection by an uncovered GSDMD-mediated IFN secretion, which may present a novel target of coronavirus antiviral therapeutics. IMPORTANCE Coronaviruses, primarily targeting respiratory and gastrointestinal epithelia in vivo, have a serious impact on humans and animals. GSDMD, a main executioner of pyroptosis, is highly expressed in epithelial cells and involves viral infection pathogenesis. While the functions and importance of GSDMD as a critical regulator of inflammasome activities in response to intracellular bacterial infection have been extensively investigated, the roles of GSDMD during coronavirus infection remain unclear. We here show that alphacoronavirus TGEV triggered pyroptosis and upregulated GSDMD expression, while GSDMD broadly suppressed the infection of enteric coronavirus TGEV and PDCoV by its pore-forming activity via promoting unconventional release of IFN-ß. Our study highlights the importance of GSDMD as a regulator of innate immunity and may open new avenues for treating coronavirus infection.

4.
Br J Pharmacol ; 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: covidwho-2243739

RESUMO

A cytokine storm is one of the leading causes of acute respiratory distress syndrome (ARDS) and sepsis-associated multiple organ failure in many respiratory viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths worldwide, resulting in an urgent need for effective therapeutic interventions. Repurposing immunosuppressive drugs that target cytokines with immunomodulatory properties is a promising approach to counteract SARS-CoV-2-induced ARDS at the infective and post-infective stages. In this minireview, we examine drugs targeting IL-1ß, IL-4/IL-13, IL-6 and TNF-α tested in COVID-19 patients.

5.
Heliyon ; 9(2): e13119, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-2179061

RESUMO

Social distancing has been essential during the COVID-19 pandemic to slow the spread of the disease. Online learning ensures students can participate in learning activities while also maintaining a physical distance from other students. Although online learning was used to prevent the spread of COVID-19, the development of online learning has also been promoted. Here, we sought to explore the perceptions and responses of students to online learning during the pandemic using a cross-sectional study. Electronic questionnaire was used for data collection. Statistical analyses were performed for 1614 valid questionnaires and P < 0.05 was considered statistically significant. Overall, COVID-19 had more effect on female students, such as fear of COVID-19 (2.4 times higher than the number of male students) and length of time spent learning (H = 42.449, P < 0.05). However, the higher the students' grades were, the less the impact of COVID-19. For the style of lessons, all students would prefer shorter lessons (P < 0.05). Female and fifth-grade students were more prefer combined online and face-to-face learning, and male and freshmen students were more likely to prefer face-to-face learning after the pandemic. More than 50% of students thought the main advantage of online learning was convenience, with low efficiency being a disadvantage. The main factors negatively influencing online learning were eyestrain, poor network connections, and poor learning environments at home. In conclusion, synchronous online and face-to-face learning may become more common in future curricula, however the efficiency of online learning and the female students more attentions.

7.
BMC Neurol ; 22(1): 462, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2162318

RESUMO

BACKGROUND: JC virus (JCV) is common among healthy individuals and remains latent but may be reactivated under immunosuppressive conditions, resulting in progressive multifocal leukoencephalopathy (PML). Here, we present a rare case of PML caused by JC virus infection in a previously healthy and immunocompetent patient. CASE PRESENTATION: A 67-year-old female without any disease history was admitted after presenting with rapidly progressive dementia. The preoperative diagnosis was progressive multifocal leukoencephalopathy, and corticosteroid treatment did not improve the symptoms. Brain lesions were surgically sampled, and JCV infection was confirmed by high-throughput DNA gene detection. This patient received a combined treatment of mirtazapine, mefloquine, and traditional Chinese herbs, and had stabilization of the disease on followed-up. CONCLUSIONS: Although it is a rare, this case demonstrates that JC virus infection within the brain occurs in apparently healthy people. This case may increase our understanding of virus infection when facing the coronavirus epidemic in recent years, considering that similar medications were used.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Feminino , Humanos , Idoso , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Mefloquina/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mirtazapina/uso terapêutico
8.
Nat Commun ; 13(1): 7675, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2160208

RESUMO

Although ocular manifestations are reported in patients with COVID-19, consensus on ocular tropism of SARS-CoV-2 is lacking. Here, we infect K18-hACE2 transgenic mice with SARS-CoV-2 using various routes. We observe ocular manifestation and retinal inflammation with production of pro-inflammatory cytokines in the eyes of intranasally (IN)-infected mice. Intratracheal (IT) infection results in dissemination of the virus from the lungs to the brain and eyes via trigeminal and optic nerves. Ocular and neuronal invasions are confirmed using intracerebral (IC) infection. Notably, the eye-dropped (ED) virus does not cause lung infection and becomes undetectable with time. Ocular and neurotropic distribution of the virus in vivo is evident in fluorescence imaging with an infectious clone of SARS-CoV-2-mCherry. The ocular tropic and neuroinvasive characteristics of SARS-CoV-2 are confirmed in wild-type Syrian hamsters. Our data can improve the understanding regarding viral transmission and clinical characteristics of SARS-CoV-2 and help in improving COVID-19 control procedures.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Pulmão , Mesocricetus , Inflamação
9.
Disease Surveillance ; 37(9):1192-1197, 2022.
Artigo em Chinês | GIM | ID: covidwho-2143864

RESUMO

Objective: To understand the molecular epidemiological characteristics of COVID-19 in Ningxia, and provide evidence for the surveillance, prevention and control of COVID-19.

10.
Telematics and Informatics Reports ; : 100033, 2022.
Artigo em Inglês | ScienceDirect | ID: covidwho-2132477

RESUMO

A rapid transformation to telehealth was a necessary precaution during the pandemic. This research sought a better understanding of factors impacting patients’ decisions on choosing telehealth. A mixed methods study was conducted with a sample of 276 patients. An online survey was used to collect qualitative and quantitative data. This study found that technical issues were the most significant factor preventing patients from using telehealth, among other factors such as waiting time and privacy concern. The results inform policy-makers and healthcare providers on how to optimize telehealth. The limitations of this study and future research directions are also discussed.

11.
J Control Release ; 348: 84-94, 2022 08.
Artigo em Inglês | MEDLINE | ID: covidwho-2103001

RESUMO

Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.


Assuntos
RNA Circular , RNA , Humanos , RNA/genética , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNA
12.
J Craniofac Surg ; 33(5): 1300-1302, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2008691

RESUMO

ABSTRACT: To report 2 successfully managed cases of graft rejection with acellular porcine corneal stroma (APCS) transplantation in patients with fungal corneal ulcer. Two patients were diagnosed with fungal corneal ulcer and received APCS transplantation. Graft rejection developed due to the lost follow-up during the period of coronavirus disease 2019 outbreak. Amniotic membranes transplantation and cauterization of neovascularization was performed, respectively. The graft failure resolved successfully after the procedure. To the best of our knowledge, amniotic membranes transplantation and cauterization of new vessels are the firstly reported in treating APCS graft failure. Amniotic membranes transplantation or cauterization of neovascularization appear to be a safe and costeffective method for treating graft failure.


Assuntos
COVID-19 , Transplante de Córnea , Úlcera da Córnea , Animais , Substância Própria/transplante , Transplante de Córnea/métodos , Rejeição de Enxerto , Pandemias , Suínos
13.
J Chem Inf Model ; 62(17): 3961-3969, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2008238

RESUMO

Protein-protein interactions (PPIs) are involved in almost all biological processes in the cell. Understanding protein-protein interactions holds the key for the understanding of biological functions, diseases and the development of therapeutics. Recently, artificial intelligence (AI) models have demonstrated great power in PPIs. However, a key issue for all AI-based PPI models is efficient molecular representations and featurization. Here, we propose Hom-complex-based PPI representation, and Hom-complex-based machine learning models for the prediction of PPI binding affinity changes upon mutation, for the first time. In our model, various Hom complexes Hom(G1, G) can be generated for the graph representation G of protein-protein complex by using different graphs G1, which reveal G1-related inner connections within the graph representation G of protein-protein complex. Further, for a specific graph G1, a series of nested Hom complexes are generated to give a multiscale characterization of the PPIs. Its persistent homology and persistent Euler characteristic are used as molecular descriptors and further combined with the machine learning model, in particular, gradient boosting tree (GBT). We systematically test our model on the two most-commonly used data sets, that is, SKEMPI and AB-Bind. It has been found that our model outperforms all the existing models as far as we know, which demonstrates the great potential of our model for the analysis of PPIs. Our model can be used for the analysis and design of efficient antibodies for SARS-CoV-2.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Aprendizado de Máquina , Mutação , Ligação Proteica , SARS-CoV-2/genética
14.
The Journal of craniofacial surgery ; 33(5):1300-1302, 2021.
Artigo em Inglês | EuropePMC | ID: covidwho-1939919

RESUMO

: To report 2 successfully managed cases of graft rejection with acellular porcine corneal stroma (APCS) transplantation in patients with fungal corneal ulcer. Two patients were diagnosed with fungal corneal ulcer and received APCS transplantation. Graft rejection developed due to the lost follow-up during the period of coronavirus disease 2019 outbreak. Amniotic membranes transplantation and cauterization of neovascularization was performed, respectively. The graft failure resolved successfully after the procedure. To the best of our knowledge, amniotic membranes transplantation and cauterization of new vessels are the firstly reported in treating APCS graft failure. Amniotic membranes transplantation or cauterization of neovascularization appear to be a safe and costeffective method for treating graft failure.

15.
J Virol ; 96(14): e0073822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1909581

RESUMO

Respiratory coronaviruses cause serious health threats to humans and animals. Porcine respiratory coronavirus (PRCoV), a natural transmissible gastroenteritis virus (TGEV) mutant with partial spike deletion, causes mild respiratory disease and is an interesting animal respiratory coronavirus model for human respiratory coronaviruses. However, the absence of robust ex vivo models of porcine airway epithelium hinders an understanding of the pathogenesis of PRCoV infection. Here, we generated long-term porcine airway organoids (AOs) derived from basal epithelial cells, which recapitulate the in vivo airway complicated epithelial cellularity. Both 3D and 2D AOs are permissive for PRCoV infection. Unlike TGEV, which established successful infection in both AOs and intestinal organoids, PRCoV was strongly amplified only in AOs, not intestinal organoids. Furthermore, PRCoV infection in AOs mounted vigorous early type I and III interferon (IFN) responses and upregulated the expression of overzealous inflammatory genes, including pattern recognition receptors (PRRs) and proinflammatory cytokines. Collectively, these data demonstrate that stem-derived porcine AOs can serve as a promising disease model for PRCoV infection and provide a valuable tool to study porcine respiratory infection. IMPORTANCE Porcine respiratory CoV (PRCoV), a natural mutant of TGEV, shows striking pathogenetic similarities to human respiratory CoV infection and provides an interesting animal model for human respiratory CoVs, including SARS-CoV-2. The lack of an in vitro model recapitulating the complicated cellularity and structure of the porcine respiratory tract is a major roadblock for the study of PRCoV infection. Here, we developed long-term 3D airway organoids (AOs) and further established 2D AO monolayer cultures. The resultant 3D and 2D AOs are permissive for PRCoV infection. Notably, PRCoV mediated pronounced IFN and inflammatory responses in AOs, which recapitulated the inflammatory responses associated with PRCoV in vivo infection. Therefore, porcine AOs can be utilized to characterize the pathogenesis of PRCoV and, more broadly, can serve as a universal platform for porcine respiratory infection.


Assuntos
Imunidade Inata , Organoides , Coronavirus Respiratório Porcino , Sistema Respiratório , Animais , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Modelos Animais de Doenças , Humanos , Organoides/imunologia , Organoides/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2 , Suínos
16.
Geophysical Research Letters ; 49(11):1-13, 2022.
Artigo em Inglês | Academic Search Complete | ID: covidwho-1900433

RESUMO

Surface ozone is damaging to human health and crop yields. When evaluating global air pollution risk, gridded datasets with high accuracy are desired to reflect the local variations in air pollution concentrations. Here, a cluster‐enhanced ensemble machine learning method was used to develop a new 0.5‐degree monthly surface ozone data set during 2003–2019 by combining numerous informative variables. The overall accuracy of our data set is 91.5% (90.8% for space and 92.3% for time). Historically, populations in South Asia, North Africa and Middle‐East, and High‐income North America are exposed to the highest ozone concentrations. Globally, the population weighted ozone concentration in the peak season is 47.07 ppbv. Our results highlight that ozone pollution is intensifying in some regions, and implicate air quality management is crucial to secure human health from air pollution. Plain Language Summary: Surface ozone is one of the most hazardous air pollutants to human health and plants. However, estimation of global surface ozone is still limited. Here, by using state‐of‐the‐art machine learning techniques, we fuse satellite, chemical transport model outputs, atmospheric reanalyses, and emission data with surface observations to construct a full coverage and long‐time period surface ozone data set. We demonstrate that surface population weighted ozone concentration in North America and Europe has decreased from 2003 to 2019, while ozone pollution in East Asia has intensified during 2016–2019. We also show at least 37% of the world's population is exposed to ozone greater than the World Health Organization's interim target one of 50 ppbv (MDA8) in the peak season. Our results could help identify the key regions for improving global air quality and offers an insightful data set for human health assessments and air quality management. Key Points: A cluster‐enhanced ensemble machine learning method can predict global surface ozone with high accuracyPopulations in South Asia, North Africa and Middle‐East, and High‐income North America are exposed to the highest MDA8 during 2003–2019At least 37% of world's population is exposed to greater than 50 ppbv MDA8 in peak seasons [ FROM AUTHOR] Copyright of Geophysical Research Letters is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

17.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1890873

RESUMO

Graph neural networks (GNNs) are the most promising deep learning models that can revolutionize non-Euclidean data analysis. However, their full potential is severely curtailed by poorly represented molecular graphs and features. Here, we propose a multiphysical graph neural network (MP-GNN) model based on the developed multiphysical molecular graph representation and featurization. All kinds of molecular interactions, between different atom types and at different scales, are systematically represented by a series of scale-specific and element-specific graphs with distance-related node features. From these graphs, graph convolution network (GCN) models are constructed with specially designed weight-sharing architectures. Base learners are constructed from GCN models from different elements at different scales, and further consolidated together using both one-scale and multi-scale ensemble learning schemes. Our MP-GNN has two distinct properties. First, our MP-GNN incorporates multiscale interactions using more than one molecular graph. Atomic interactions from various different scales are not modeled by one specific graph (as in traditional GNNs), instead they are represented by a series of graphs at different scales. Second, it is free from the complicated feature generation process as in conventional GNN methods. In our MP-GNN, various atom interactions are embedded into element-specific graph representations with only distance-related node features. A unique GNN architecture is designed to incorporate all the information into a consolidated model. Our MP-GNN has been extensively validated on the widely used benchmark test datasets from PDBbind, including PDBbind-v2007, PDBbind-v2013 and PDBbind-v2016. Our model can outperform all existing models as far as we know. Further, our MP-GNN is used in coronavirus disease 2019 drug design. Based on a dataset with 185 complexes of inhibitors for severe acute respiratory syndrome coronavirus (SARS-CoV/SARS-CoV-2), we evaluate their binding affinities using our MP-GNN. It has been found that our MP-GNN is of high accuracy. This demonstrates the great potential of our MP-GNN for the screening of potential drugs for SARS-CoV-2. Availability: The Multiphysical graph neural network (MP-GNN) model can be found in https://github.com/Alibaba-DAMO-DrugAI/MGNN. Additional data or code will be available upon reasonable request.


Assuntos
Tratamento Farmacológico da COVID-19 , Análise de Dados , Desenho de Fármacos , Humanos , Redes Neurais de Computação , SARS-CoV-2
18.
AMB Express ; 12(1), 2022.
Artigo em Inglês | ProQuest Central | ID: covidwho-1837317

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, a series of vaccines, antibodies and drugs have been developed to combat coronavirus disease 2019 (COVID-19). High specific antibodies are powerful tool for the development of immunoassay and providing passive immunotherapy against SARS-CoV-2 and expected with large scale production. SARS-CoV-2 S1 protein was expressed in E. coli BL21 and purified by immobilized metal affinity chromatography, as antigen used to immunize hens, the specific IgY antibodies were extracted form egg yolk by PEG-6000 precipitation, and the titer of anti-S1 IgY antibody reached 1:10,000. IgY single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and the IgY-scFv showed high binding sensitivity and capacity to S1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/µL. The docking study showed that the multiple epitopes on the IgY-scFv interacted with multiple residues on SARS-CoV-2 S1 RBD to form hydrogen bonds. This preliminary study suggests that IgY and IgY-scFv are suitable candidates for the development of immunoassay and passive immunotherapy for COVID-19 to humans and animals.

19.
RSC advances ; 11(28):17408-17412, 2021.
Artigo em Inglês | EuropePMC | ID: covidwho-1813010

RESUMO

Therapeutic options in response to the coronavirus disease 2019 (COVID-19) outbreak are urgently needed. In this communication, we demonstrate how to support selection of a stable solid form of an antiviral drug remdesivir in quick time using the microcrystal electron diffraction (MicroED) technique and a cloud-based and artificial intelligence implemented crystal structure prediction platform. We present the MicroED structures of remdesivir forms II and IV and conclude that form II is more stable than form IV at ambient temperature in agreement with experimental observations. The combined experimental and theoretical study can serve as a template for formulation scientists in the pharmaceutical industry. Combining microcrystal electron diffraction (MicroED) and a cloud-based and artificial intelligence implemented crystal structure prediction (CSP) platform to support selection of a stable solid form of remdesivir in quick time.

20.
mBio ; 13(3): e0068322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1788919

RESUMO

Compared to the original ancestral strain of SARS-CoV-2, the Delta variant of concern has shown increased transmissibility and resistance toward COVID-19 vaccines and therapies. However, the pathogenesis of the disease associated with Delta is still not clear. In this study, using K18-hACE2 transgenic mice, we assessed the pathogenicity of the Delta variant by characterizing the immune response following infection. We found that Delta induced the same clinical disease manifestations as the ancestral SARS-CoV-2, but with significant dissemination to multiple tissues, such as brain, intestine, and kidney. Histopathological analysis showed that tissue pathology and cell infiltration in the lungs of Delta-infected mice were the same as in mice infected with the ancestral SARS-CoV-2. Delta infection caused perivascular inflammation in the brain and intestinal wall thinning in K18-hACE2 transgenic mice. Increased cell infiltration in the kidney was observed in both ancestral strain- and Delta-infected mice, with no clear visible tissue damage identified in either group. Interestingly, compared with mice infected with the ancestral strain, the numbers of CD45+ cells, T cells, B cells, inflammatory monocytes, and dendritic cells were all significantly lower in the lungs of the Delta-infected mice, although there was no significant difference in the levels of proinflammatory cytokines between the two groups. Our results showed distinct immune response patterns in the lungs of K18-hACE2 mice infected with either the ancestral SARS-CoV-2 or Delta variant of concern, which may help to guide therapeutic interventions for emerging SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 variants, with the threat of increased transmissibility, infectivity, and immune escape, continue to emerge as the COVID-19 pandemic progresses. Detailing the pathogenesis of disease caused by SARS-CoV-2 variants, such as Delta, is essential to better understand the clinical threat caused by emerging variants and associated disease. This study, using the K18-hACE2 mouse model of severe COVID-19, provides essential observation and analysis on the pathogenicity and immune response of Delta infection. These observations shed light on the changing disease profile associated with emerging SARS-CoV-2 variants and have potential to guide COVID-19 treatment strategies.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite D , Animais , Vacinas contra COVID-19 , Modelos Animais de Doenças , Humanos , Melfalan , Camundongos , Camundongos Transgênicos , Pandemias , SARS-CoV-2/genética , gama-Globulinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA